Anlage		Α	В	С	D	Е	F	
Color Colo	1		<u> </u>	U	D			
A								
A		G	FAW		dirakt		Erweiterte Prüfung	
A	3				diiekt			
The content of the		Zuo	rdnungskriterien für D	eponien	Denonievero			
S	-			орошоп	-			
7 Zuordnungskriterien in der Originalsubstanz					Aillially 5			
8 1	-	_				(Deponiekl.	II)	
9 1.01 Gibhverhist								
10 1.02 TOC	_			standes der (Originalsubstanz	, bestimmt als ²⁾		
11 2 Feststoffkriterien 2				Masse %				
1				Masse %	< 3 ^{3) 4) 5)}	< 18		
12	11							
13	12	2.07	• •	Masse %	< 0,8 ⁵⁾	< 0,8		
14 Biel	_		·	ma/ka TM	Erlasse des Nieder	s MII vom 30 01 2007	1,000	
15	_							
16								
17							î 	
18			·		stimmun	g del 203 AGG		
19			'					
20					⇒ Pflichtpara	meter für		
STEX My (C _{III} bis C _{II} bis C _{III} bis C _{II} bis C _{III} bi								
22					gefahrliche	e J-Abfalle		
23								
24							25	
26	24						1.000 (500)	
27 2.06 Säureneutralisationskapazität ⁷ mmol/kg muss bei gefährlichen Abfällen ermittelt werden	25		Σ PCB (7 nach DIN)	mg/kg TM			10	
28 3 Zuordnungskriterien im Eluat 29 3.18a Antimon (Sb) ¹6⟩ mg/l ≤ 0,07¹3⟩ 30 3.18b Antimon-C₀-Wert ¹6⟩ mg/l ≤ 0,15 ¹3⟩ 31 3.04 Arsen mg/l ≤ 0,2 32 3.15 Barium (Ba) mg/l ≤ 10¹3⟩ 33 3.05 Blei mg/l ≤ 1 ≤ 1 34 3.06 Cadmium mg/l ≤ 0,1 ≤ 0,1 35 3.11 Chlorid²² mg/l ≤ 1 ≤ 1 36 3.16 Chrom, gesamt mg/l ≤ 0,5 ≤ 0,5 38 3.02 DOC°9 mg/l ≤ 80³³¹¹⁰¹¹¹¹ ≤ 300 39 3.14 Fluorid mg/l ≤ 5 ≤ 5 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdán (Mo) mg/l ≤ 1° ≤ 1 42 3.08 Nickel mg/l ≤ 50 ≤ 50	26			ng/kg TM (TE)			10.000	
29 3.18a	27	2.06	Säureneutralisationskapazität ⁷⁾	mmol/kg	muss bei gefährliche	n Abfällen ermittelt werden		
30 3.18b	28	3 Zuo	rdnungskriterien im Eluat					
31 3.04 Arsen mg/l ≤ 0,2 ≤ 0,2	29	3.18a	Antimon (Sb) ¹⁶⁾	mg/l				
32 3.15 Barium (Ba) mg/l ≤10 ¹³⁾ 33 3.05 Blei mg/l ≤1 ≤1 34 3.06 Cadmium mg/l ≤0,1 ≤0,1 35 3.11 Chlorid ¹²⁾ mg/l 1.500 ¹³⁾ 36 3.16 Chrom, gesamt mg/l ≤0,5 ≤0,5 38 3.02 DOC ⁹⁾ mg/l ≤15 ≤25 40 3.07 Kupfer mg/l ≤15 ≤25 41 3.17 Molybdän (Mo) mg/l ≤1 ¹³⁾ 42 3.08 Nickel mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤50 ≤50 44 3.01 pH-Wert ⁸⁾ mg/l ≤50 ≤50 45 3.09 Quecksilber mg/l ≤0,5 3.19 Selen (Se) mg/l ≤0,5 3.10 Silfat ¹²⁾ mg/l ≤0,5 3.11 ≤10 3.12 Sulfat ¹²⁾ mg/l ≤0,02 ≤0,02 46 3.19 Selen (Se) mg/l ≤0,05 47 3.12 Sulfat ¹²⁾ mg/l ≥0,05 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT ₄) mg/g oder Gasbildungsrate (GB 2t) l/kg	30	3.18b	Antimon-C _o -Wert ¹⁶⁾	mg/l	<u><</u> 0,15 ¹³⁾			
33 3.05 Blei mg/l ≤1 ≤1 34 3.06 Cadmium mg/l ≤0,1 ≤0,1 35 3.11 Chlorid ¹² mg/l 1.500 ¹³ 36 3.16 Chrom, gesamt mg/l ≤1 37 3.13 Cyanide leicht freisetzbar mg/l ≤80,5 ≤0,5 38 3.02 DOC ⁹ mg/l ≤803 ³¹⁰⁺¹ ≤300 39 3.14 Fluorid mg/l ≤15 ≤25 40 3.07 Kupfer mg/l ≤5 ≤5 41 3.17 Molybdän (Mo) mg/l ≤1 ¹³ 42 3.08 Nickel mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤50 ≤50 44 3.01 pH-Wert ⁸ mg/l ≤50 ≤50 45 3.09 Quecksilber mg/l ≤0,02 ≤0,02 46 3.19 Selen (Se) mg/l ≤0,005 ¹³ 47 3.12 Sulfat ¹² mg/l ≤0,005 ¹³ 48 3.20 Feststoffen mg/l 6,000 6,000 49 3.10 Zink mg/l ≤5 ≤5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤5 ³⁰ oder Gasbildungsrate (GB 21) l/kg ≤20 ⁴¹		3.04		mg/l	<u><</u> 0,2	<u><</u> 0,2		
33 3.05 Blei mg/l ≤1 ≤1 34 3.06 Cadmium mg/l ≤0,1 ≤0,1 35 3.11 Chlorid ¹² mg/l 1.500 ¹³ 36 3.16 Chrom, gesamt mg/l ≤1 37 3.13 Cyanide leicht freisetzbar mg/l ≤80,5 ≤0,5 38 3.02 DOC ⁹ mg/l ≤803 ³¹⁰⁺¹ ≤300 39 3.14 Fluorid mg/l ≤15 ≤25 40 3.07 Kupfer mg/l ≤5 ≤5 41 3.17 Molybdän (Mo) mg/l ≤1 ¹³ 42 3.08 Nickel mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤50 ≤50 44 3.01 pH-Wert ⁸ mg/l ≤50 ≤50 45 3.09 Quecksilber mg/l ≤0,02 ≤0,02 46 3.19 Selen (Se) mg/l ≤0,005 ¹³ 47 3.12 Sulfat ¹² mg/l ≤0,005 ¹³ 48 3.20 Feststoffen mg/l 6,000 6,000 49 3.10 Zink mg/l ≤5 ≤5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤5 ³⁰ oder Gasbildungsrate (GB 21) l/kg ≤20 ⁴¹	32	3.15	Barium (Ba)	mg/l	<u><</u> 10 ¹³⁾			
35 3.11 Chlorid ¹²⁾ mg/l 1.500 ¹³⁾ 36 3.16 Chrom, gesamt mg/l ≤ 1 37 3.13 Cyanide leicht freisetzbar mg/l ≤ 0,5 ≤ 0,5 38 3.02 DOC ⁹⁾ mg/l ≤ 80 ^{3) (0) (1)} ≤ 300 39 3.14 Fluorid mg/l ≤ 15 ≤ 25 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdän (Mo) mg/l ≤ 1 ¹³⁾ 42 3.08 Nickel mg/l ≤ 1 ≤ 1 43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert ⁸⁾ mg/l ≤ 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05 ⁽³⁾ 47 3.12 Sulfat ⁽²⁾ mg/l ≤ 0,05 ⁽³⁾ 48 3.20 Feststoffen mg/l 6,000 6,000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5 ³⁾ oder Gasbildungsrate (GB 2₁) I/kg ≤ 20 ⁴⁾			Blei	mg/l	<u><</u> 1	<u><</u> 1		
36 3.16 Chrom, gesamt mg/l ≤ 1 37 3.13 Cyanide leicht freisetzbar mg/l ≤ 0.5 ≤ 0.5 38 3.02 DOC 9) mg/l ≤ 80 3) 10) 11) ≤ 300 39 3.14 Fluorid mg/l ≤ 15 ≤ 25 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdän (Mo) mg/l ≤ 1 13) ≤ 1 ≤ 1 42 3.08 Nickel mg/l ≤ 50 ≤ 50 ≤ 50 44 3.01 pH-Wert 8) mg/l 5,5-13,0 5,5-13,0 4,5-13,0 5,5-13,0 5,5-13,0 5,5-13,0 4,				mg/l	<u><</u> 0,1	<u><</u> 0,1		
37 3.13 Cyanide leicht freisetzbar mg/l ≤ 0,5 ≤ 0,5 38 3.02 DOC ⁹⁾ mg/l ≤ 80 ^{31 (9) 11)} ≤ 300 39 3.14 Fluorid mg/l ≤ 15 ≤ 25 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdän (Mo) mg/l ≤ 1 ¹³⁾ 42 3.08 Nickel mg/l ≤ 1 ≤ 1 43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert ⁸⁾ mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,02 ≤ 0,02 47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als Atmungsaktivität (AT ₄)								
38 3.02 DOC 9) mg/l ≤ 80³ 10) 11) ≤ 300 39 3.14 Fluorid mg/l ≤ 15 ≤ 25 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdän (Mo) mg/l ≤ 11³ ≤ 1 42 3.08 Nickel mg/l ≤ 50 ≤ 50 43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert® mg/l ≤ 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,051³ 10 47 3.12 Sulfat¹²²) mg/l 2.000¹³ 10 48 3.20 Feststoffen mg/l 6.000 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als ≤ 5³¹ 50 oder Gasbildungsrate (GB 21) l/kg <t< td=""><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td></t<>				·				
39 3.14 Fluorid mg/l ≤ 15 ≤ 25 40 3.07 Kupfer mg/l ≤ 5 ≤ 5 41 3.17 Molybdän (Mo) mg/l ≤ 113) 42 3.08 Nickel mg/l ≤ 1 ≤ 1 43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert® mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05 ¹³⁾ 47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³ 52 oder Gasbildungsrate (GB ₂1) l/kg ≤ 20⁴			,	·				
40 3.07 Kupfer mg/l ≤5 ≤5 41 3.17 Molybdän (Mo) mg/l ≤1¹³³ 42 3.08 Nickel mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤50 ≤50 44 3.01 pH-W ert ⁸) mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤0,02 ≤0,02 46 3.19 Selen (Se) mg/l ≤0,05¹³) 47 3.12 Sulfat¹²) mg/l 2.000¹³) 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤5 ≤5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤5³³ 52 oder Gasbildungsrate (GB ₂1) l/kg ≤20⁴³								
41 3.17 Molybdän (Mo) mg/l ≤ 1 ¹³⁾ 42 3.08 Nickel mg/l ≤ 1 ≤ 1 43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert ^{®)} mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05 ¹³⁾ 47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT ₄) mg/g ≤ 5 ³⁾ 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20 ⁴⁾				· ·				
42 3.08 Nickel mg/l ≤1 ≤1 43 3.03 Phenole, gesamt mg/l ≤50 ≤50 44 3.01 pH-Wert ⁸⁾ mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤0,02 ≤0,02 46 3.19 Selen (Se) mg/l ≤0,05¹³³⟩ 47 3.12 Sulfat¹²⟩ mg/l 2.000¹³⟩ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤5 ≤5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤5³³ 52 oder Gasbildungsrate (GB ₂¹) l/kg ≤20⁴³			'		<u><</u> 5 . ₄13)	<u><</u> 5		
43 3.03 Phenole, gesamt mg/l ≤ 50 ≤ 50 44 3.01 pH-Wert ⁸⁾ mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05 ¹³⁾ 47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT ₄) mg/g ≤ 5 ³⁾ 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20 ⁴⁾			, , ,	·				
44 3.01 pH-Wert® mg/l 5,5-13,0 5,5-13,0 45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05¹³⟩ 47 3.12 Sulfat¹²) mg/l 2.000¹³⟩ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³⟩ 52 oder Gasbildungsrate (GB ₂1) I/kg ≤ 20⁴⟩								
45 3.09 Quecksilber mg/l ≤ 0,02 ≤ 0,02 46 3.19 Selen (Se) mg/l ≤ 0,05¹³¹⟩ 47 3.12 Sulfat¹²¹⟩ mg/l 2.000¹³³⟩ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³¹ 52 oder Gasbildungsrate (GB ₂¹) l/kg ≤ 20⁴¹								
46 3.19 Selen (Se) mg/l ≤ 0,05 ¹³⁾ 47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³) 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20⁴)			4.	·				
47 3.12 Sulfat ¹²⁾ mg/l 2.000 ¹³⁾ 48 3.20 Feststoffen mg/l 6.000 49 3.10 Zink mg/l ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³) 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20⁴)						<u> </u>		
48 3.20 Gesamtgehalt an gelösten mg/l 6.000 6.000 49 3.10 Zink mg/l ≤5 ≤5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤5³ oder Gasbildungsrate (GB ₂₁) l/kg ≤20⁴)				·				
48 3.20 Feststoffen mg/l 6.000 6.000 49 3.10 Zink mg/l ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³¹ 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20⁴¹		J. 1Z		my/i	2.000			
49 3.10 Zink mg/l ≤ 5 50 4 Biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz, bestimmt als 51 Atmungsaktivität (AT₄) mg/g ≤ 5³¹ 52 oder Gasbildungsrate (GB ₂₁) l/kg ≤ 20⁴¹	48	3.20		mg/l	6.000	6.000		
			Zink	mg/l	<u><</u> 5	≤ 5		
51 Atmungsaktivität (AT₄) mg/g $\leq 5^{3}$ 52 oder Gasbildungsrate (GB $_{21}$) l/kg $\leq 20^{4}$	50	4 Biolo	ogische Abbaubarkeit des Trockenrück	standes der Ori	ginalsubstanz, bes	timmt als		
52 oder Gasbildungsrate (GB ₂1) l/kg ≤20 ⁴⁾			Atmungsaktivität (AT ₄)	mg/g		≤ 5 ³⁾		
53 5 Oberer Heizwert (H₀) kJ/kg ≤ 6.000		<u> </u>				<u><</u> 20 ⁴⁾		
	53	5 Ober	er Heizwert (H ₀)	kJ/kg		≤ 6.000		

Zelle: F3

Kommentar: nach § 8 (1) Nrn. 9 + 10 DepV

Kennzeichnung mit "J" im Nds. Musterkatalog von 2007, Spalten 4 + 5, Erlass des NMU von 2007

Zelle: F4

Kommentar: Untersuchungen auf weitere Schadstoffe wie z.B. zinnorganische Verbindungen, polyfluoreirte Tenside sind im Feststoff durchzuführen, wenn nach Art, Beschaffenheit und Herkunft des Abfalls Anhaltspunkte für erhöhte Gehalte bestehen. Dies gilt auch bei Anhaltspunkten für relevante BTXE- oder LCKW-Gehalte. Diese sind bei der Entscheidung über die Zulässigkeit der Ablagerung im Einzelfall zu berücksichtigen. Zur Sicherstellung eines landeseinheitlichen Vollzuges ist in diesen Fällen das Staaatliche Gewerbeaufsichtsamt Hildesheim als Zentrale Unterstützungsstelle Abfallwirtschaft, Gentechnik und Gerätesicherheit (ZUS AGG) zu beteiligen.

Zelle: A8

Kommentar: Nummer 1.01 kann gleichwertig zu Nummer 1.02 angewandt werden.

Zelle: B9

Kommentar:

Abweichend von den Sätzen 3 und 8 sind Überschreitungen bei den Parametern Glühverlust oder TOC mit Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitungen durch elementaren Kohlenstoff verursacht werden oder wenn

- a) der jeweilige Zuordnungswert für den DOC, jeweils unter Berücksichtigung der Fußnote 9, 10 oder 11 zur Tabelle 2, eingehalten wird,
- b) die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mg/g (bestimmt als Atmungsaktivität - AT4) oder von 20 l/kg (bestimmt als Gasbildungsrate im Gärrest - GB 21) unterschritten wird.
- c) der Brennwert (Ho) von 6 000 kJ/kg TM nicht überschritten wird, es sei denn, es handelt sich um schwermetallbelastete Ionenaustauschharzen aus der Trinkwasserbehandlung,
- d) es sich bei Ablagerung auf Deponien der Klasse 0 um Boden und Baggergut handelt und ein TOC von 6 Masseprozent nicht überschritten wird und
- e) der Abfall nicht für den Bau der geologischen Barriere verwendet wird.

Zelle: D9

- Kommentar: 3) Eine Überschreitung des Zuordnungswertes ist mit Zustimmung der zuständigen Behörde bei Bodenaushub (Abfallschlüssel 17 05 04 und 20 02 02 nach der Anlage zur Abfallverzeichnis-Verordnung) und bei Baggergut (Abfallschlüssel 17 05 06 nach der Anlage zur Abfallverzeichnis-Verordnung) zulässig, wenn
 - a) die Überschreitung aussschließlich auf natürliche Bestandteile des Bodenaushubes oder des Baggergutes zurückgeht,
 - b) sonstige Fremdbestandteile nicht mehr als 5 Volumenprozent ausmachen,
 - c) auf der Deponie, dem Abschnitt oder dem gesonderten Teilabschnitt eines Deponieabschnittes ausschließlich nicht gefährliche Abfälle abgelagert werden und
 - d) das Wohl der Allgemeinheit gemessen an den Anforderungen dieser Verordnung nicht beeinträchtigt wird.
 - 4) Der Zuordnungswert gilt nicht für Aschen aus der Braunkohlefeuerung sowie für Abfälle oder Deponieersatzbaustoffe aus Hochtemperaturprozessen, zu letzteren gehören insbesondere Abfälle aus der Verarbeitung von Schlacke, unbearbeitete Schlacke, Stäube und Schlämme aus der Abgasreinigung von Sinteranlagen, Hochöfen, Schachtöfen und Stahlwerken der Eisen- und Stahlindustrie
 - 5) Gilt nicht für Asphalt auf Bitumenbasis.

Zelle: B10

Kommentar: Abweichend von den Sätzen 3 und 8 sind Überschreitungen bei den Parametern Glühverlust oder TOC mit

Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitungen durch elementaren Kohlenstoff verursacht werden oder wenn

- a) der jeweilige Zuordnungswert für den DOC, jeweils unter Berücksichtigung der Fußnote 9, 10 oder 11 zur Tabelle 2, eingehalten wird,
- b) die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mg/g (bestimmt als Atmungsaktivität - AT4) oder von 20 l/kg (bestimmt als Gasbildungsrate im Gärrest - GB 21) unterschritten wird.
- c) der Brennwert (Ho) von 6 000 kJ/kg TM nicht überschritten wird, es sei denn, es handelt sich um schwermetallbelastete Ionenaustauschharzen aus der Trinkwasserbehandlung,
- d) es sich bei Ablagerung auf Deponien der Klasse 0 um Boden und Baggergut handelt und ein TOC von 6 Masseprozent nicht überschritten wird und
- e) der Abfall nicht für den Bau der geologischen Barriere verwendet wird.

Zelle: D10

Kommentar: 3) Eine Überschreitung des Zuordnungswertes ist mit Zustimmung der zuständigen Behörde bei Bodenaushub (Abfallschlüssel 17 05 04 und 20 02 02 nach der Anlage zur Abfallverzeichnis-Verordnung) und bei Baggergut (Abfallschlüssel 17 05 06 nach der Anlage zur Abfallverzeichnis-Verordnung) zulässig, wenn

- a) die Überschreitung aussschließlich auf natürliche Bestandteile des Bodenaushubes oder des Baggergutes zurückgeht,
- b) sonstige Fremdbestandteile nicht mehr als 5 Volumenprozent ausmachen.
- c)auf der Deponie, dem Abschnitt oder dem gesonderten Teilabschnitt eines Deponieabschnittes ausschließlich nicht gefährliche Abfälle abgelagert werden und
- d) das Wohl der Allgemeinheit gemessen an den Anforderungen dieser Verordnung nicht beeinträchtigt wird.
- 4) Der Zuordnungswert gilt nicht für Aschen aus der Braunkohlefeuerung sowie für Abfälle oder Deponieersatzbaustoffe aus Hochtemperaturprozessen, zu letzteren gehören insbesondere Abfälle aus der Verarbeitung von Schlacke, unbearbeitete Schlacke, Stäube und Schlämme aus der Abgasreinigung von Sinteranlagen, Hochöfen, Schachtöfen und Stahlwerken der Eisen- und Stahlindustrie
- 5) Gilt nich tfür Asphalt auf Bitumenbasis.

Zelle: D12

Kommentar: 5) Gilt nicht für Asphalt auf Bitumenbasis

Zelle: B22 Kommentar:

C10 bis C40 nach KW 04

Zelle: F23

Kommentar: Summe der halogenierten C1- und C2- Kohlenwasserstoffe

Zelle: B24

Kommentar: Abweichend kann teerhaltiger Straßenaufbruch mit höheren PAK-Gehalten auf Deponien der Klasse II

entsorgt werden

Zelle: F24

Kommentar: Der PAK-Gehalt gilt für Straßenaufbruch sowie für Boden und Bauschutt, der nicht von Gaswerksstandorten,

Teerölimprignieranlagen oder ähnlichen Standorten stammt. In derartigen Fällen gilt der halbe

Zuordnungswert. Abweichend kann Straßenaufbruch als Schollenaufbruch oder hydraulisch gebunden in Monopoldern auf Deponien der Klassen I oder II mit PAK-Gehalten bis 5.000 mg/kg abgelagert werden,

wenn der Abfall nach einer Entsorgungsmaßnahme mit bindigem Boden abgedeckt wird (s. Erlass vom 23.03.2006 Az: 36-62800/05/2).

Zelle: B25

Kommentar: Summe der 7 PCB-Kongenere, PCB-28, -52, -101, -118, -138, -153, 180 gemäß Änderung durch Art I der

Ersten Verorndung zur Änderung der DepV v. 17.10.2011

Zelle: B26

Kommentar: Summe berechnet auf der Grundlage der TE-Faktoren nach Anhang IV POP-Verordnung

Zelle: F26

Kommentar: "Bestehen Anhaltspunkte für relevante Gehalte an polychlorierten Dioxinen und Furanen, so sind auch die Toxizitätsäquivalente zu bestimmen. Die Ablagerungsfähigkeit in Ablagerungsbereichen von Deponien der Klassen I und II ist anhand der Zuordnungswerte der Tabelle 2 zu beurteilen. Die Ablagerung dieser Abfälle ist an die Bedingungen geknüpft, dass nach Art und Ort des Einbaus ein Kontakt zu organisch belastetem Sickerwasser weitestgehend ausgeschlossen ist.

Zelle: B27

Kommentar:

7) Nicht erforderlich bei asbesthaltigen Abfällen und Abfällen, die andere gefährliche Mineralfasern enthalten

Zelle: B29

Kommentar: 16) Überschreitungen des Antimonwertes nach Nummer 3.18a sind zulässig, wenn der Co-Wert der Perkolationsprüfung nach Nummer bei L/S = 0,1 l/kg nach Nr. 3.18b nicht überschritten wird

Zelle: D29

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B30

Kommentar: 16) Überschreitungen des Antimonwertes nach Nummer 3.18a sind zulässig, wenn der Co-Wert der Perkolationsprüfung nach Nummer bei L/S = 0,1 l/kg nach Nr. 3.18b nicht überschritten wird

Zelle: D30

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: D32

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B35

Kommentar: 12) Nr. 3.20 kann gleichwertig zu den Nr. 3.11 und 3.12 angewandt werden

Zelle: D35

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B38

Kommentar: 9) Der Zuordnungswert für DOC ist auch eingehalten, wenn der Abfall oder der Deponiebauersatzstoff den Zuordnungswert nicht bei seinem eigenen pH-Wert, aber bei einem pH-Wert zwischen 7,5 und 8,0 einhält.

Zelle: D38

Kommentar: 3) Eine Überschreitung des Zuordnungswertes ist mit Zustimmung der zuständigen Behörde bei Bodenaushub (Abfallschlüssel 17 05 04 und 20 02 02 nach der Anlage zur Abfallverzeichnis-Verordnung) und bei Baggergut (Abfallschlüssel 17 05 06 nach der Anlage zur Abfallverzeichnis-Verordnung) zulässig,

- a) die Überschreitung aussschließlich auf natürliche Bestandteile des Bodenaushubes oder des Baggergutes zurückgeht,
- b) sonstige Fremdbestandteile nicht mehr als 5 Volumenprozent ausmachen.
- c) auf der Deponie, dem Abschnitt oder dem gesonderten Teilabschnitt eines Deponieabschnittes ausschließlich nicht gefährliche Abfälle abgelagert werden und
- d) das Wohl der Allgemeinheit gemessen an den Anforderungen dieser Verordnung nicht beeinträchtigt wird.
- 10) Auf Abfälle oder Deponieersatzbaustoffe auf Gipsbasis nur in den Fällen anzuwenden, wenn sie gemeinsam mit biologisch abbaubaren oder gefährlichen Abfällen abgelagert oder eingesetzt werden.
- 11) Überschreitungen des DOC bis max. 100 mg/l sind zulässig, wenn auf der Deponie oder dem Deponieabschnitt seit dem 18. Juli 2005 ausschließlich nicht gefärhliche Abfälle oder Deponieersatzstoffe abgelagert oder eingesetzt werden.

Zelle: D41

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B44

Kommentar: 8) Abweichende pH-Werte stellen allein kein Ausschlusskriterium dar. Bei Über- oder Unterschreitungen ist die Ursache zu prüfen.

> Werden jedoch auf Deponie der Klassen I und II gefärhliche Abfälle abgelagert, muss deren pH-wert mindesten 6,0 betragen

Zelle: D46

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B47

Kommentar: 12) Statt der Nr. 3.11 und 3.12 kann Nr. 3.20 angewandt werden

Zelle: D47

Kommentar: 13) Der Zuordnungswert gilt nicht, wenn auf der Deponie oder dem Deponieabschnitt seit dem 16. Juli 2005 ausschließlich nicht gefährliche Abfälle oder Deponieersatzbaustoffe abgelagert oder eingesetzt werden

Zelle: B51

Kommentar:

Abweichend von den Sätzen 3 und 8 sind Überschreitungen bei den Parametern Glühverlust oder TOC mit Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitungen durch elementaren Kohlenstoff verursacht werden oder wenn

- a) der jeweilige Zuordnungswert für den DOC, jeweils unter Berücksichtigung der Fußnote 9, 10 oder 11 zur Tabelle 2, eingehalten wird,
- b) die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mg/g (bestimmt als Atmungsaktivität - AT4) oder von 20 l/kg (bestimmt als Gasbildungsrate im Gärrest - GB 21) unterschritten wird.
- c) der Brennwert (Ho) von 6 000 kJ/kg TM nicht überschritten wird, es sei denn, es halndelt sich um schwermetallbelastete Ionenaustauschharzen aus der Trinkwasserbehandlung,
- d) es sich bei Ablagerung auf Deponien der Klasse 0 um Boden und Baggergut handelt und ein TOC von 6 Masseprozent nicht überschritten wird und
- e) der Abfall nicht für den Bau der geologischen Barriere verwendet wird.

Zelle: E51

Kommentar: 3) mg O2 bezogen auf Trockenmasse.

Zelle: B52

Kommentar:

Abweichend von den Sätzen 3 und 8 sind Überschreitungen bei den Parametern Glühverlust oder TOC mit Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitungen durch elementaren Kohlenstoff verursacht werden oder wenn

- a) der jeweilige Zuordnungswert für den DOC, jeweils unter Berücksichtigung der Fußnote 9, 10 oder 11 zur Tabelle 2, eingehalten wird,
- b) die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mg/g (bestimmt als Atmungsaktivität AT4) oder von 20 l/kg (bestimmt als Gasbildungsrate im Gärrest GB 21) unterschritten wird.
- c) der Brennwert (Ho) von 6 000 kj/kg TM nicht überschritten wird, es sei denn, es halndelt sich um schwermetallbelastete Ionenaustauschharzen aus der Trinkwasserbehandlung,
- d) es sich bei Ablagerung auf Deponien der Klasse 0 um Boden und Baggergut handelt und ein TOC von 6 Masseprozent nicht überschritten wird und
- e) der Abfall nicht für den Bau der geologischen Barriere verwendet wird.

Zelle: E52

Kommentar: 4) Normliter Gas bezogen auf Trockenmasse.

Zelle: A53

Kommentar:

Abweichend von den Sätzen 3 und 8 sind Überschreitungen bei den Parametern Glühverlust oder TOC mit Zustimmung der zuständigen Behörde zulässig, wenn die Überschreitungen durch elementaren Kohlenstoff verursacht werden oder wenn

- a) der jeweilige Zuordnungswert für den DOC, jeweils unter Berücksichtigung der Fußnote 9, 10 oder 11 zur Tabelle 2, eingehalten wird,
- b) die biologische Abbaubarkeit des Trockenrückstandes der Originalsubstanz von 5 mg/g (bestimmt als Atmungsaktivität AT4) oder von 20 l/kg (bestimmt als Gasbildungsrate im Gärrest GB 21) unterschritten wird.
- c) der Brennwert (Ho) von 6 000 kJ/kg TM nicht überschritten wird, es sei denn, es handelt sich um schwermetallbelastete Ionenaustauschharzen aus der Trinkwasserbehandlung,
- d) es sich bei Ablagerung auf Deponien der Klasse 0 um Boden und Baggergut handelt und ein TOC von 6 Masseprozent nicht überschritten wird und
- e) der Abfall nicht für den Bau der geologischen Barriere verwendet wird.